- Weatherford Knowledge Base
- P#
- Machine Learning Functions
-
Getting Started
-
Customer Training
-
Customer Success
-
Updates
-
Production Optimization
-
Artificial Lift Optimization
-
Completion Optimization
-
Environmental, Social & Governance
-
Development, Acquisition & Divestitures
-
Enhanced Oil Recovery
-
Admin
-
P#
- Getting Started with P#
- Data Cleansing
- String Functions
- Scenario Functions
- Regression Functions
- Placeholder Functions
- Mathematical Functions
- Logic Functions
- Entities Function
- Moving Window Functions
- Time and Date Functions
- Statistical Functions
- Economic Functions
- Data Handling
- Additional Functions
- Directional Functions
- Machine Learning Functions
- DCA Functions
- Neighborhood Functions
-
Packages
DetectAnomaly()
Detects anomalies in numeric expression using specified parameters. The result value is set by the anomalyDetection argument:
- "Anomaly" (0 or 1 - indicates anomaly alert for a given data point),
- "AnomalyScore", "Mag", "ExpectedValue", "BoundaryUnit", "UpperBoundary" or "LowerBoundary".
- Detect mode: "AnomalyOnly", "AnomalyAndMargin" or "AnomalyAndExpectedValue".
Syntax
DetectAnomaly(numericExpression, threshold, batchSize, sensitivity,
string detectMode, string anomalyDetection, date/time forecastStartTime)
Example
DetectAnomaly("oil production" in "m3", 0.5, 1000, 0, "AnomalyOnly", "Anomaly", #01/01/2021#)
DetectAnomaly("oil production" in "m3", 0.3, 100, 99, "AnomalyAndMargin",
"AnomalyScore", #02/02/2022#)
DetectAnomaly("oil production" in "m3", 0.2, 500, 100, "AnomalyAndExpectedValue",
"Mag", #03/03/2023#)